Home Menschen Info Artikel Blogs Veranstaltungen Videos Dateien Fotos Seiten Store
Beitrag Ansicht

Dev c++ Prog for Factorizing Odd Integers by Twinproducts and Squares IMPROVED VERSION in ENGLISH

//(C) Dr. Ulrike Ritter : Copies and changes demand explicit acceptance by the author

#include<stdio.h>

#include<conio.h>

#include<string.h>

#include <math.h>

#include <cstdlib>

#include <iostream>

#include<algorithm>

int main(void)

{

int abs;

int n;

int a1;

int a2;

int c1;

int c2;

int e2;

int e1;

int q1;

int a;

int b;

int c;

int d;

int h;

int d2;

int UB;

int OB;

std::cout <<"\n  Input Odd Integer for Output Difference Twinproduct minor Square  \n";

std::cout <<"a: \n";

std::cin >> a;

a1 = (a+1)/4;

a2 = (a-1)/4;

c1 = (a1*4-1);

c2 = (a2*4+1);

if (c1==a)

{

std::cout <<"\n   A is a +1 mod 4 integer. The difference-int is a1:  "<< a1 << "\n";

for (int n=1;n<9999;n++)

{

for (d=1; d<9999; d++)

{q1 = d*d;

e1 = q1- n*(n+1);

UB=(2*n+1);

OB=(2*d);

if (e1==a1)

{

std::cout <<"  For a or a1 exist these squares and twinproducts:   \n";

std::cout <<"  As upper base d^2   " <<q1<< "  with base d:  " << d<< "\n";

std::cout <<"  and as lower base the twinproduct n*(n+1) :  "<<n*(n+1)<<"   with n =  " <<n<< "    \n";

std::cout <<"   Hence the integer a is =  "<< OB <<"^2 -  "  <<UB<<"^2 \n";

}}}

}

if (c2==a)

{

std::cout <<"\n   A is a -1 mod 4 integer. The difference-int is a2:  "<< a2 << "\n";

for (int n=1;n<9999;n++)

{

for (int d=1; d<9999; d++)

{

q1 = d*d;

e2 = (n*(n+1)-q1);

OB=(2*n+1);

UB=(2*d);

if (e2==a2)

{

std::cout <<"  For a or a1 exist these squares and twinproducts:   \n";

std::cout <<"  As upper base the twinproduct n*(n+1) :  "<<n*(n+1)<<"   with n =  " <<n<< "    \n";

std::cout <<"  As lower base d^2   " <<q1<< "  with base d:  " << d<< "\n";

std::cout <<"   Hence the integer a is =  "<< OB <<"^2 -  "  <<UB<<"^2 \n";

}

}

}

}

}

Verlag 03.03.2018 1 714
Kommentare
Ordnen nach:
Pro Seite:

•  Verlag: If you have a fitting difference of a twinproduct and a square, just calculate the following equivalences to get the square difference that factorizes your number: example: diffenceInteger for 99 is 25 and 99 is a +1 int. We find 9^2 as the upper square for 81-25 = 56 and 7*8 as the twins for the lower base Now some equivalences: 25 = 9^2 -7*8 //*4 100 = 324 - 224 //-1 100-1 = 18^2 - 224-1 99 = 18^2 - (224+1) 99 = 18^2 - 15^2 third binominal formular : 99 = (18+15)*(18-15) 99 = 33*3 03.03.2018
0 Punkte

Postinfo
03.03.2018 (_x_days_ago)
Rate
1 Abstimmungen
Aktionen
Empfehlen
Kategorien
Books (14 beiträge)
Entertainment Blogs (23 beiträge)
Lifestyle (1 beiträge)
Politics (1 beiträge)
Tech News (3 beiträge)
Tags