Latest posts

Der Winter kommt und mit ihm die langen Abende: www.geliebte-tiere.de  Es gibt gute und schlechte Nachrichten von uns Verlagskaninchen, aber wir wollen euch natürlich trotzdem kaninchengerecht in und durch den Winter bringen: spannend, kuschelig, abenteuerlich, süß, emotional, genusssüchtig, geistreich, quietschvergnügt..... Deshalb bin ich,
MiraSolisAcris 5 days ago 0 18

Like the Programm for (multiple + factor)^2 - (factor)^2  (expressions from (approx_root - n )^2 + multiple * (approx_root - n) + rest = Z ) the Formular should be generalized to get integer result for every giveen number. As you can chose your appropriate n, it is trivial that there is at least one (mostly two). But even with a rational resul
ZifferZahlZitat 30.09.2017 0 44

As far, I've found the following three (in a way, two) formulars to determine n for a factor (x-n) , as far considered for numbers with the structure "nteger base of the approximated root" ^2 + integer base of the approximated root + rest (= number to be factorized)   I write this as prox ^2 + prox + rest = Z   An analytic formular to get (in
ZifferZahlZitat 29.09.2017 0 91

Hier ist das bereits bekannte Programm in ausführlicher Form, allerdings noch immer auf Deutsch. Es werden jetzt Zahlen mit beliebigem Vielfachen des Faktors im 'Rest' analysiert.  #include<stdio.h>#include<conio.h>#include<string.h>#include <math.h>#include <cstdlib>#include <iostream>#include<algorithm&
ZifferZahlZitat 25.09.2017 0 38

Damit die diversen "en passant" Postings nicht zu verwirrend wirken, schnell ein paar Worte dazu: Alle Überlegungen hier sind Notizen und zum Teil unkorrigiert oder unvollständig, da die endgültigen und durchkorrigierten Arbeiten als Anthologie in klassischeer Druckform erscheinen werden. In dem Buch geht es um Vereinfachungsstartegien in der
ZifferZahlZitat 24.09.2017 0 37

So well... to summarize the current results in a language for everybody: I found two ways to design the structuring of a number in respect to squares. The first is to find squares and to show their specific relation to the factorized number. This is the function the dev c++ programm has been written for. Numbbers (Z), within this context, inte
ZifferZahlZitat 08.09.2017 0 85

Also kurzgefasst ist die Formel, auf deren Basis das C++ Programm Teiler findet, eine Art vierte Binomische, eigentlich trivial, aber eben besonders, insofern die klassischen binomischen Formel gemeinsam zum Einsatz kommen und so eine Anwendung zur Analyse nicht-quadratischer Zahlen ermöglichen, für die ein Quadratzahlenabschnitt gemäß der dri
ZifferZahlZitat 02.09.2017 0 107

Nochmal erklärt, und einiges zur Nutzung der Formel x^2 + a*(2x-1) + r  Die wesentliche Einsicht ist, dass 'a minus r' aus der Formel oben dem Faktor x oder einem Vielfachen des Faktors gleich sein müssen. Das Programm listet Faktoren auf, die zu Zerlegungen der Art a^2 - b^2 führen, also (a+b)*(a-b). In besonderen Fällen auch zu Zerlegungen
ZifferZahlZitat 30.08.2017 0 87

ABSTRACT:   Das Programm listet Faktoren auf, die zu Zerlegungen der Art a^2 - b^2 führen, also (a+b)*(a-b). In besonderen Fällen auch zu Zerlegungen der Art a^2 - b^2 + z*n  bzw. (=) (a+b)*(a-b) + z*n wobei z*n ein Teiler von der analysierten Zahl Z ist ("Z" ohne referenzielle Identität mit z). Untersucht wurden Strukturen ausgehend von der a
ZifferZahlZitat 28.08.2017 0 113

Also, da die bislang ausgeführten Überlegungen in den vorigen Blogs etwas unübersichtlich waren und reativ untrennbar mit der "Intisierung" von rationalen Zahlen verbunden - was ja eigentlich auch intendiert ist, nur eben im Rahmen einfacher Algebra/Analysis bzw. für Funktionsplotter nicht einfach umzusetzen, Der Vorteil bbei diesen kalkulatio
ZifferZahlZitat 27.08.2017 1 115

Hier einfach mal die Funktionen, wobei in dieser schematischen Darstellung die Handhabe zwischen /Q und /N noch fehlt. Grundsätzlich können die Vielfachen immer auf die nächsthöhere ganze Zahl 'gerundet' werden, bzw man kann einfach +1 rechnen und dann den ganzzahligen teil verwenden. .  (Zur Notation: "wrz" = apprximierte Wurzel, z.B für 3052
ZifferZahlZitat 27.08.2017 1 105

Jetzt endlich einen kleinen Schritt weiter.   Wir zerlegen die Zahl 305203   Wurzelapproximation führt zu n= 552 und  552^2 = 304704. Die Differenz 305203 - 552^2  = 499 Wir betrachten in der Folge die Differenzen von der zu analysierenden zahl Z (hier 305203) und ihren kleineren Quadraten n^2. Die Differenzen werden in Vielfache von 2n-1 und
ZifferZahlZitat 26.08.2017 0 85

Auf der Suche nach einer allgemeinen Regel fassen wir hier nochmal zusammen, wie Quadratreihen helfen können, ungerade Zahlen zu faktorisieren: 1 Jede ungerade Zahl ist durch einen Abschnitt der Quadratzahlenreihe n^2 = SUM 2n -1 darstellbar. Der Beweis ist trivial, denn 2n - 1 entspricht der Folge ungerader zahlen. Nötigenfalls, z.B. bei Prim
ZifferZahlZitat 20.08.2017 0 105

  Faktorisierung mit Hilfe der dritten binomischen Formel: Quadratische Gleichung statt Wurzelapproximation  Nach dem Mathematiker Blaise Pascal kann man Fakoren einer Zahl finden, indem man erst die Wurzel approximiert und dann von diesem Term aus jeweils vergrößert, bis man die Differenz so zerlegen kann, dass sie mit dem größeren Quadrat ei
ZifferZahlZitat 12.08.2017 0 121

Jetzt sind alle Sechserpotenzen auf insgesamt 35 reduziert mit verschiedenen Koeffizienten. Der letzte Term hat den Wert 71, also 6^2 + 35, was wiederum bedeutet, er lässt sich auf alle vorhandenen anderen Sechserpotenzen (Summanden im r300-Polynom) verteilen. Damit lassen sich diese geraden Zahlen wieder unformen in ungerade, alle in gleicher
ZifferZahlZitat 07.08.2017 0 113
Blog Posts Calendar
‹ Prev Mon Next Mon › November, 2017
Mo Tu We Th Fr Sa Su
1 2 3 4 5
6 7 8 9 10 11 12
13 14 1 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
Top blogs
35 Posts
The secret blog of secrets
4 Posts
Hier ist Miri ! Ihr kennt mich ja schon von www.geliebte-tiere.de Hier repräsentiere ich unsere Verlagssparte "Groove &amp; Kaninhop-Lifestyle, for one, two up to four legged beings" ;) u.a. www.geliebte-tiere.de Lest mehr im Blog....
1 Posts
Huhu....hier bin ich dann mal wieder, die Miri !