Latest posts

So well... to summarize the current results in a language for everybody: I found two ways to design the structuring of a number in respect to squares. The first is to find squares and to show their specific relation to the factorized number. This is the function the dev c++ programm has been written for. Numbbers (Z), within this context, inte
ZifferZahlZitat 13 days ago 0 16

Also kurzgefasst ist die Formel, auf deren Basis das C++ Programm Teiler findet, eine Art vierte Binomische, eigentlich trivial, aber eben besonders, insofern die klassischen binomischen Formel gemeinsam zum Einsatz kommen und so eine Anwendung zur Analyse nicht-quadratischer Zahlen ermöglichen, für die ein Quadratzahlenabschnitt gemäß der dri
ZifferZahlZitat 02.09.2017 0 37

Nochmal erklärt, und einiges zur Nutzung der Formel x^2 + a*(2x-1) + r  Die wesentliche Einsicht ist, dass 'a minus r' aus der Formel oben dem Faktor x oder einem Vielfachen des Faktors gleich sein müssen. Das Programm listet Faktoren auf, die zu Zerlegungen der Art a^2 - b^2 führen, also (a+b)*(a-b). In besonderen Fällen auch zu Zerlegungen
ZifferZahlZitat 30.08.2017 0 35

ABSTRACT:   Das Programm listet Faktoren auf, die zu Zerlegungen der Art a^2 - b^2 führen, also (a+b)*(a-b). In besonderen Fällen auch zu Zerlegungen der Art a^2 - b^2 + z*n  bzw. (=) (a+b)*(a-b) + z*n wobei z*n ein Teiler von der analysierten Zahl Z ist ("Z" ohne referenzielle Identität mit z). Untersucht wurden Strukturen ausgehend von der a
ZifferZahlZitat 28.08.2017 0 57

Also, da die bislang ausgeführten Überlegungen in den vorigen Blogs etwas unübersichtlich waren und reativ untrennbar mit der "Intisierung" von rationalen Zahlen verbunden - was ja eigentlich auch intendiert ist, nur eben im Rahmen einfacher Algebra/Analysis bzw. für Funktionsplotter nicht einfach umzusetzen, Der Vorteil bbei diesen kalkulatio
ZifferZahlZitat 27.08.2017 1 59

Hier einfach mal die Funktionen, wobei in dieser schematischen Darstellung die Handhabe zwischen /Q und /N noch fehlt. Grundsätzlich können die Vielfachen immer auf die nächsthöhere ganze Zahl 'gerundet' werden, bzw man kann einfach +1 rechnen und dann den ganzzahligen teil verwenden. .  (Zur Notation: "wrz" = apprximierte Wurzel, z.B für 3052
ZifferZahlZitat 27.08.2017 1 42

Jetzt endlich einen kleinen Schritt weiter.   Wir zerlegen die Zahl 305203   Wurzelapproximation führt zu n= 552 und  552^2 = 304704. Die Differenz 305203 - 552^2  = 499 Wir betrachten in der Folge die Differenzen von der zu analysierenden zahl Z (hier 305203) und ihren kleineren Quadraten n^2. Die Differenzen werden in Vielfache von 2n-1 und
ZifferZahlZitat 26.08.2017 0 34

Auf der Suche nach einer allgemeinen Regel fassen wir hier nochmal zusammen, wie Quadratreihen helfen können, ungerade Zahlen zu faktorisieren: 1 Jede ungerade Zahl ist durch einen Abschnitt der Quadratzahlenreihe n^2 = SUM 2n -1 darstellbar. Der Beweis ist trivial, denn 2n - 1 entspricht der Folge ungerader zahlen. Nötigenfalls, z.B. bei Prim
ZifferZahlZitat 20.08.2017 0 45

  Faktorisierung mit Hilfe der dritten binomischen Formel: Quadratische Gleichung statt Wurzelapproximation  Nach dem Mathematiker Blaise Pascal kann man Fakoren einer Zahl finden, indem man erst die Wurzel approximiert und dann von diesem Term aus jeweils vergrößert, bis man die Differenz so zerlegen kann, dass sie mit dem größeren Quadrat ei
ZifferZahlZitat 12.08.2017 0 58

Jetzt sind alle Sechserpotenzen auf insgesamt 35 reduziert mit verschiedenen Koeffizienten. Der letzte Term hat den Wert 71, also 6^2 + 35, was wiederum bedeutet, er lässt sich auf alle vorhandenen anderen Sechserpotenzen (Summanden im r300-Polynom) verteilen. Damit lassen sich diese geraden Zahlen wieder unformen in ungerade, alle in gleicher
ZifferZahlZitat 07.08.2017 0 50

  Die Zusammenfassung der Koeffizienten als strukturierte Summe ist jetzt im Gange. Es wird immer auf die 2er Koeffizienten "reduziert", die sich dann erweitern durch neue Polynome der Art (10*6^18 + 4*6^17 ....)* also strukturerhaltend sind und alle Vielfachen (Koeffizienten) der über dem ausgewählten Strukturpunkt liegenden Sechserpotenzen
ZifferZahlZitat 05.08.2017 0 77

Also ausgehend von Zweierkoeffizienten prüft man noch, welche darüberliegenden Koeffizienten gleiche Summen ergeben, wenn man sie auf die Zweierkoeffizienten 'reduziert'  bzw. man reduziert auf die Potenzen mit Exponent 2 und sucht dann den kleinsten gemeinsamen Teiler. Als Beispiel ein Vergleich folgender Polynome: A 10*6^4 + 0*6^3 +2*6^2 und
ZifferZahlZitat 04.08.2017 0 44

Also, da die Struktur der Koeffizienten auch bei geraden Koeffis total chaotisch ist,  - die Funktionsbilder sind allerdings noch nicht vollständig - scheint es mir das Beste zu sein, die Funktion durch (z.B.) alle 2er Koeffizienten mit ihren Sechserpotenzen plus oder minus 1 zu teilen. Allerdings wird letztendlich auch eine Primzahl als Teile
ZifferZahlZitat 03.08.2017 0 39

  Die Zahlen von RSA300 sind noch etwas durcheinander, aber im Prinzip gilt jetzt: Nach der Umformung lässt sich an der Summe der Koeffizienten ablesen, ob eine Zahl durch 5 teilbar ist (klar). Ist die Summe der Koeffizienten durch 5 teilbar, dann auch das gesamte Polynom. Die analysierten Zahlen enthalten Primfaktoren, die strukturgleich (geg
ZifferZahlZitat 02.08.2017 0 43

Hier mal die erste Zeile der Koeffizienten des Sechserpolynoms von RSA300, beginnend mit dem Koeffizienten von 6^384:  4,1,4,2,1 - diese ersten fünf Koeffizienten fehlten - dafür hänge ich jetzt noch zehn weitere dran. 4,2,1,1,4,1, 2,1,5,3,1,5,5,3,4,5,2,2,2,3,2,2,1,2,5,3,0,5,5,4,5,1,2,3,5,4,5,0,0,3,3,5,4,0,1,1,1,4,4,3,3,2,4, 5,5,1,0,5,3,4,3
ZifferZahlZitat 29.07.2017 0 87
Blog Posts Calendar
‹ Prev Mon Next Mon › September, 2017
Mo Tu We Th Fr Sa Su
1 2 1 3
4 5 6 7 8 1 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
Top blogs
31 Posts
The secret blog of secrets
3 Posts
Hier ist Miri ! Ihr kennt mich ja schon von www.geliebte-tiere.de Hier repräsentiere ich unsere Verlagssparte "Groove & Kaninhop-Lifestyle, for one, two up to four legged beings" ;) u.a. www.geliebte-tiere.de Lest mehr im Blog....
1 Posts
Huhu....hier bin ich dann mal wieder, die Miri !