Books

As far, I've found the following three (in a way, two) formulars to determine n for a factor (x-n) , as far considered for numbers with the structure "nteger base of the approximated root" ^2 + integer base of the approximated root + rest (= number to be factorized)   I write this as prox ^2 + prox + rest = Z   An analytic formular to get (in
ZifferZahlZitat 29.09.2017 0 1126

Hier ist das bereits bekannte Programm in ausführlicher Form, allerdings noch immer auf Deutsch. Es werden jetzt Zahlen mit beliebigem Vielfachen des Faktors im 'Rest' analysiert.  #include<stdio.h>#include<conio.h>#include<string.h>#include <math.h>#include <cstdlib>#include <iostream>#include<algorithm&
ZifferZahlZitat 25.09.2017 0 1020

Also kurzgefasst ist die Formel, auf deren Basis das C++ Programm Teiler findet, eine Art vierte Binomische, eigentlich trivial, aber eben besonders, insofern die klassischen binomischen Formel gemeinsam zum Einsatz kommen und so eine Anwendung zur Analyse nicht-quadratischer Zahlen ermöglichen, für die ein Quadratzahlenabschnitt gemäß der dri
ZifferZahlZitat 02.09.2017 0 692

Nochmal erklärt, und einiges zur Nutzung der Formel x^2 + a*(2x-1) + r  Die wesentliche Einsicht ist, dass 'a minus r' aus der Formel oben dem Faktor x oder einem Vielfachen des Faktors gleich sein müssen. Das Programm listet Faktoren auf, die zu Zerlegungen der Art a^2 - b^2 führen, also (a+b)*(a-b). In besonderen Fällen auch zu Zerlegungen
ZifferZahlZitat 30.08.2017 0 544

ABSTRACT:   Das Programm listet Faktoren auf, die zu Zerlegungen der Art a^2 - b^2 führen, also (a+b)*(a-b). In besonderen Fällen auch zu Zerlegungen der Art a^2 - b^2 + z*n  bzw. (=) (a+b)*(a-b) + z*n wobei z*n ein Teiler von der analysierten Zahl Z ist ("Z" ohne referenzielle Identität mit z). Untersucht wurden Strukturen ausgehend von der a
ZifferZahlZitat 28.08.2017 0 604

Also, da die bislang ausgeführten Überlegungen in den vorigen Blogs etwas unübersichtlich waren und reativ untrennbar mit der "Intisierung" von rationalen Zahlen verbunden - was ja eigentlich auch intendiert ist, nur eben im Rahmen einfacher Algebra/Analysis bzw. für Funktionsplotter nicht einfach umzusetzen, Der Vorteil bbei diesen kalkulatio
ZifferZahlZitat 27.08.2017 1 662

Hier einfach mal die Funktionen, wobei in dieser schematischen Darstellung die Handhabe zwischen /Q und /N noch fehlt. Grundsätzlich können die Vielfachen immer auf die nächsthöhere ganze Zahl 'gerundet' werden, bzw man kann einfach +1 rechnen und dann den ganzzahligen teil verwenden. .  (Zur Notation: "wrz" = apprximierte Wurzel, z.B für 3052
ZifferZahlZitat 27.08.2017 1 599

Jetzt endlich einen kleinen Schritt weiter.   Wir zerlegen die Zahl 305203   Wurzelapproximation führt zu n= 552 und  552^2 = 304704. Die Differenz 305203 - 552^2  = 499 Wir betrachten in der Folge die Differenzen von der zu analysierenden zahl Z (hier 305203) und ihren kleineren Quadraten n^2. Die Differenzen werden in Vielfache von 2n-1 und
ZifferZahlZitat 26.08.2017 0 655

Auf der Suche nach einer allgemeinen Regel fassen wir hier nochmal zusammen, wie Quadratreihen helfen können, ungerade Zahlen zu faktorisieren: 1 Jede ungerade Zahl ist durch einen Abschnitt der Quadratzahlenreihe n^2 = SUM 2n -1 darstellbar. Der Beweis ist trivial, denn 2n - 1 entspricht der Folge ungerader zahlen. Nötigenfalls, z.B. bei Prim
ZifferZahlZitat 20.08.2017 0 782

Also, da die Struktur der Koeffizienten auch bei geraden Koeffis total chaotisch ist,  - die Funktionsbilder sind allerdings noch nicht vollständig - scheint es mir das Beste zu sein, die Funktion durch (z.B.) alle 2er Koeffizienten mit ihren Sechserpotenzen plus oder minus 1 zu teilen. Allerdings wird letztendlich auch eine Primzahl als Teile
ZifferZahlZitat 03.08.2017 0 599

Ich habe hier mal ein kleines Programm erstellt, mit dem man eine normal hohe Zahl (int) in ihr Sechserpolynom zerlegen kann. (Programm hier als direkter Paste-Post zum Kopieren unter dem Beispiel). Es ist noch nicht optimal, da man schrittweise ablesen oder mehrmals eine Restzahl eingeben muss. Aber bei so kleinen Zahlen sehr übersichtlich. D
ZifferZahlZitat 26.07.2017 0 628

Die Zerlegung einer ca 300stelligen Zahl in Sechserpolynome ist nach Computerabsturz etc noch nicht ganz fertig. hier ein Interimsschmankerl:   A) Zerlegen kann man ungerade Zahlen als Sechserpolynome in - gleiche Anzahlen aufenanderfolgender Potenzen mit gleicher Koeffizientenbasis (Koeffizienten identisch oder Vielfache voneinander, z.B. 123
ZifferZahlZitat 18.07.2017 1 643

1147 = 31 * 37   (1147 – 1 ): 6 = 191   6* 191 + 1   191 – 5 /6 = 31     Also:  6* (31*6 +5) + 1 Auflösen der Klammer zu Produkten als Summanden und einfache Umformung der Vielfachen (Distributivgesetz):  = 36*31 + 30 + 1 = 36*31 + 1*31 = 37 * 31 Im Prinzip fasst man einfach die Vielfachen der Sechserpotenzen zusammen und versucht, aus den Par
ZifferZahlZitat 14.06.2017 0 612