Tags - koeffizienten

Jetzt sind alle Sechserpotenzen auf insgesamt 35 reduziert mit verschiedenen Koeffizienten. Der letzte Term hat den Wert 71, also 6^2 + 35, was wiederum bedeutet, er lässt sich auf alle vorhandenen anderen Sechserpotenzen (Summanden im r300-Polynom) verteilen. Damit lassen sich diese geraden Zahlen wieder unformen in ungerade, alle in gleicher
Artemis Wissen 07.08.2017 0 656

  Die Zusammenfassung der Koeffizienten als strukturierte Summe ist jetzt im Gange. Es wird immer auf die 2er Koeffizienten "reduziert", die sich dann erweitern durch neue Polynome der Art (10*6^18 + 4*6^17 ....)* also strukturerhaltend sind und alle Vielfachen (Koeffizienten) der über dem ausgewählten Strukturpunkt liegenden Sechserpotenzen
Artemis Wissen 05.08.2017 0 722

  Die Zahlen von RSA300 sind noch etwas durcheinander, aber im Prinzip gilt jetzt: Nach der Umformung lässt sich an der Summe der Koeffizienten ablesen, ob eine Zahl durch 5 teilbar ist (klar). Ist die Summe der Koeffizienten durch 5 teilbar, dann auch das gesamte Polynom. Die analysierten Zahlen enthalten Primfaktoren, die strukturgleich (geg
Artemis Wissen 02.08.2017 0 666

Hier mal die erste Zeile der Koeffizienten des Sechserpolynoms von RSA300, beginnend mit dem Koeffizienten von 6^384:  4,1,4,2,1 - diese ersten fünf Koeffizienten fehlten - dafür hänge ich jetzt noch zehn weitere dran. 4,2,1,1,4,1, 2,1,5,3,1,5,5,3,4,5,2,2,2,3,2,2,1,2,5,3,0,5,5,4,5,1,2,3,5,4,5,0,0,3,3,5,4,0,1,1,1,4,4,3,3,2,4, 5,5,1,0,5,3,4,3
Artemis Wissen 29.07.2017 0 732

Die Überlegungen von heute Nachmittag lassen sich jetzt so verallgemeinern:   1 Die Koeffizientenfolge reicht, weil damit gesichert ist, dass die Summanden des Polynoms Vielfache voneinander sind. 2 Alle Primfaktoren haben kleinstmögliche Darstellungen der Form 6^n + 6^(n-1).... + 1 oder 6^n + 6^(n-1).....+5     dabei sind  1 und 5 am Ende der
Artemis Wissen 18.07.2017 0 691