Tags - sechserpotenzen

Also ausgehend von Zweierkoeffizienten prüft man noch, welche darüberliegenden Koeffizienten gleiche Summen ergeben, wenn man sie auf die Zweierkoeffizienten 'reduziert'  bzw. man reduziert auf die Potenzen mit Exponent 2 und sucht dann den kleinsten gemeinsamen Teiler. Als Beispiel ein Vergleich folgender Polynome: A 10*6^4 + 0*6^3 +2*6^2 und
Artemis Wissen 04.08.2017 0 682

Hier mal die erste Zeile der Koeffizienten des Sechserpolynoms von RSA300, beginnend mit dem Koeffizienten von 6^384:  4,1,4,2,1 - diese ersten fünf Koeffizienten fehlten - dafür hänge ich jetzt noch zehn weitere dran. 4,2,1,1,4,1, 2,1,5,3,1,5,5,3,4,5,2,2,2,3,2,2,1,2,5,3,0,5,5,4,5,1,2,3,5,4,5,0,0,3,3,5,4,0,1,1,1,4,4,3,3,2,4, 5,5,1,0,5,3,4,3
Artemis Wissen 29.07.2017 0 732

Heute in sturer GeberInnenlaune, hier noch ein Programm zum Berechnen der Summe eines Polynoms aus Sechserpotenzen, allerdings nur bis 6^11, aber eine praktische Vereinfachung gegenüber einem TR, da nur die Koeffizienten eingegeben werden müssen. Ein int-Schmankerl, um Regeln für die Teilbarkeit dieser Polynome auf Basis der Koeffizienten zu f
Artemis Wissen 26.07.2017 0 651

Ich habe hier mal ein kleines Programm erstellt, mit dem man eine normal hohe Zahl (int) in ihr Sechserpolynom zerlegen kann. (Programm hier als direkter Paste-Post zum Kopieren unter dem Beispiel). Es ist noch nicht optimal, da man schrittweise ablesen oder mehrmals eine Restzahl eingeben muss. Aber bei so kleinen Zahlen sehr übersichtlich. D
Artemis Wissen 26.07.2017 0 697

Die Zerlegung einer ca 300stelligen Zahl in Sechserpolynome ist nach Computerabsturz etc noch nicht ganz fertig. hier ein Interimsschmankerl:   A) Zerlegen kann man ungerade Zahlen als Sechserpolynome in - gleiche Anzahlen aufenanderfolgender Potenzen mit gleicher Koeffizientenbasis (Koeffizienten identisch oder Vielfache voneinander, z.B. 123
Artemis Wissen 18.07.2017 1 709

  Also hier mal ein lkleines  Polynom: 6^5 + 6^4 + 2*6^3 + 5*6^2 + 2*6 + 5. Ist es durch 89 teilbar ? Ja, denn 89 hat die Koeffizientenstruktur 2,2,5 bei drei aufeinanderfolgenden Sechserpotenzen. Das Ausgangspolynom kann man schnell umwandeln:  6^5 + 6^4 + 2*6^3 + 5*6^2 + 2*6 + 5 ist durch 89 teilbar, denn =   4*6^4 + 4*6^3 + 10*6^2 //+2*
Artemis Wissen 20.06.2017 0 679